

REGIONE AUTONOMA FRIULI VENEZIA GIULIA ENTE DI DECENTRAMENTO REGIONALE DI UDINE

COMMITTENTE	EDR UDINE
LAVORO	INTERVENTI DI MITIGAZIONE IDRAULICA INERENTI L'INTERVENTO PNRR 03 DI COSTRUZIONE NUOVO PONTE SUL TORRENTE LEALE, SR UD 41 "DI FORGARIA AL PROGRESSIVO KM 17+300 IN COMUNE DI TRASAGHIS E MANUTENZIONE DEL PONTE DELL'ARMISTIZIO SUL TORRENTE ARZINO AL PROGRESSIVO KM 1-200 IN COMUNE DI FORGARIA NEL FRIULI
FASE	PROGETTO DI FATTIBILITA' TECNICO ECONOMICA
OGGETTO	ALLEGATI ALLA RELAZIONE GEOLOGICA – GEOTECNICA
<text><text><text><text><text><text><text></text></text></text></text></text></text></text>	IL TECNICO RESPONSABILE
ZOZ dott. VANNI GEOLOGO Via Baldo, 38 Gemona del Friuli (UD)	

DATA PROGETTO

09 LUGLIO 2024

Revisione n°	Data	Versione approvata da	codice pratica
			PU.11.24

REGIONE AUTONOMA FRIULI VENEZIA GIULIA

ENTE DI DECENTRAMENTO DI UDINE

COMUNI DI TRASAGHIS E FORGARIA NEL FRIULI

INTERVENTI DI MITIGAZIONE IDRAULICA INERENTI L'INTERVENTO PNRR 03 DI COSTRUZIONE NUOVO PONTE SUL TORRENTE LEALE, SR UD 41 "DI FORGARIA AL PROGRESSIVO KM 17+300 IN COMUNE DI TRASAGHIS E MANUTENZIONE DEL PONTE DELL'ARMISTIZIO SUL TORRENTE ARZINO AL PROGRESSIVO KM 1-200 IN COMUNE DI FORGARIA NEL FRIULI

Committente

ENTE DI DECENTRAMENTO DI UDINE

MARZO 2024

REGIONE AUTONOMA FRIULI VENEZIA GIULIA

ENTE DI DECENTRAMENTO DI UDINE COMUNI DI TRASAGHIS E FORGARIA NEL FRIULI

INTERVENTI DI MITIGAZIONE IDRAULICA INERENTI L'INTERVENTO PNRR 03 DI COSTRUZIONE NUOVO PONTE SUL TORRENTE LEALE, SR UD 41 "DI FORGARIA AL PROGRESSIVO KM 17+300 IN COMUNE DI TRASAGHIS E MANUTENZIONE DEL PONTE DELL'ARMISTIZIO SUL TORRENTE ARZINO AL PROGRESSIVO KM 1-200 IN COMUNE DI FORGARIA NEL FRIULI

RELAZIONE ALLE INDAGINI GEOFISICHE

INDICE

1. INTRODUZIONE 2. INDAGINI GEOFISICHE 2a. TOMOGRAFIE ELETTRICHE TRIDIMENSIONALI DI RESISTIVITA' ERT 2b. HVSR 2c. MASW	pag.1 pag.1 pag.1 pag.3 pag.4
ALLEGATO 1	
ALLEGATO 2	
ALLEGATO 3	
ALLEGATO 4	
ALLEGATO 5	

ALLEGATO 5 ALLEGATO 7 ALLEGATO 8 ALLEGATO 9 ALLEGATO 10 ALLEGATO 11 ALLEGATO 12

ALLEGATO 13 ALLEGATO 14

1. Introduzione

Su incarico dell'Ente di Decentramento di Udine viene redatta la seguente relazione alle indagini geofisiche realizzate mediante tomografica elettrica di resistività ERT tridimensionale e sismiche attive MASW e passive HVSR per l'intervento PNRR03_EDRUD – Segnalazione: 5340. Intervento urgente di consolidamento del ponte a travata multipla sul torrente Leale, SR UD 41 "di Forgaria" alla progr. km 17+300 e ponte dell'Armistizio sul torrente Arzino alla progr. km 1+200 in comune di Trasaghis e Forgaria del Friuli.

Figura 1- Posizionamento delle indagini geofisiche. Ponte sul T. Leale (a sinistra), ponte dell'Armistizio sul T. Arzino (a destra).

2. Indagini geofisiche

Le analisi realizzate sono state n.2 indagini tomografiche elettriche tridimensionali di resistività ERT, n.3 indagini di sismica attiva MASW e n. 7 indagini di sismica passiva HVSR. Esse saranno illustrate nei paragrafi successivi.

2a. Tomografie elettriche tridimensionali di resistività ERT

L'apparecchiatura usata per l'esecuzione delle analisi è il georesistivimetro multicanale M.A.E. X612EM+ da 96 canali con energizzatore esterno costituito da una batteria 12V/100Ah. Le specifiche tecniche principali dell'apparecchiatura sono di seguito illustrate

Corrente in uscita:

- Intensità massima: 12 A a 50V
- Tensioni di uscita: ±50V, ±100V, ±250V, ±500V, ±800V
- Potenza nominale massima: 600W
- Tempo di immissione: impostabile a partire da 0,25 sec. (visualizzazione dell'onda impostata)
- Precisione della misura: ±0,2µA

Misura di potenziale:

- Misura parallela su tutti i canali impostati
- Auto range
- Fondo scala massimo: ±25V
- Impedenza di ingresso: 2.5 MΩ
- Precisione della misura: ±1,5µV nel range ±25V
- Riduzione del rumore: con media da 2 a 255 misure
- Correzione automatica dei potenziali spontanei
- Accuratezza della resistività misurata: ±0.2%
- Polarizzazione indotta fino a 5 finestre di misura

L'elaborazione dei dati è stata effettuata mediante il software ERTLab[™] 64 v. 1.2.0 della Geostudi Astier s.r.l e Multi-Phase Tecnologies LLC. ERTLab[™] 64 è un software 3D per l'inversione di dati di resistività e caricabilità elettrica che consente la massima flessibilità nella disposizione tridimensionale degli elettrodi, mediante un apposito tool di generazione delle sequenze di misura che vengono successivamente caricate sullo strumento di misura. Il software è in grado di invertire misure tomografiche elettriche per qualunque tipo di array e geometria elettrodica,a disposizione superficiale, in foro (cross-hole) o mista (surface-to-hole). ERTLab™ utilizza un algoritmo agli Elementi Finiti per la modellazione accurata della topografia del terreno. Gli algoritmi interpretativi si focalizzano sulla modellazione diretta agli Elementi Finiti tetraedrici, sull'inversione ai Minimi Quadrati con vincolo di smoothness e sull'algoritmo di data reweighting.

Nei casi presenti, in considerazione dei valori di resistività apparente ottenuti e della morfologia del sito, si sono settate larghezza delle celle della griglia di dimensioni dimezzate rispetto alle distanze interelettrodiche fissate per lo stendimento.

Negli allegati 1, 2, 3 e 4 si possono consultare gli output grafici che illustrano i risultati delle elaborazioni delle tomografie elettriche tridimensionali e in particolare

- le isosuperfici corrispondenti a vari intervalli di resistività (allegati 1 e 3);
- le sezioni sul piano XY a intervalli di profondità di 1 m tra quota 182.5 m fino a 175.5 m (allegati 2 e 4)

Nei medesimi allegati sono inoltre osservabili il posizionamento di ogni indagine e le fotografie attestanti l'esecuzione.

Dal punto di vista metodologico entrambi gli stendimenti tridimensionali sono stati acquisiti con l'array Dipolo – Dipolo a 72 elettrodi disposti il primo attorno alle pile n.1 e n.2 ed il secondo con configurazione a C attorno alla spalla n.1 del ponte con distanza interelettrodica di 2 m costante per il primo e di 2 m e 1 m il secondo, con 6388 misure effettuate in entrambi.

Nella pratica lo stendimento presuppone l'uso di un quadripolo in cui una coppia di elettrodi di corrente C1 e C2 si posizionano esternamente ad altri due elettrodi definiti di potenziale (P1 e P2). Per le acquisizioni tridimensionali si ottengono disposizioni radiali, azimutali, equatoriali e assiali degli elettrodi: ognuna di esse è riportata in figura 2, con le relative formule di calcolo del fattore geometrico, indispensabile per determinare la resistività apparente ρ_a di ogni punto misurato.

Figura 2 – Disposizione degli elettrodi del quadripolo Dipolo–Dipolo (1: radiale; 2: azimutale; 3: equatoriale; 4: assiale), formula di calcolo del fattore geometrico k per ogni disposizione elettrodica e formula di calcolo della resistività apparente ρ_a .

Di seguito si riportano i risultati delle elaborazioni per ogni tomografia elettrica realizzata.

<u>Tomografia T1-3D</u>: si posiziona attorno alle pile n.1 e n.2 (cfr. Figura 1 e allegati 1, 2). L'estensione è stata di 48m x 24m con 72 elettrodi disposti sul perimetro a distanza interelettrodica di 2 m con 6388 misure effettuate e la massima profondità indagata è di circa 9 m rispetto alla quota di 182.5 m (quota minima del piano campagna in corrispondenza dell'alveo).

L'allegato 1 mostra le risultanze dell'analisi a partire dal piano di campagna. Le resistività sono suddivise in intervalli che evidenziano che la maggior parte di esse nella zona esaminata sono comprese tra la 20 Ωm e 750 Ωm. Valori superiori si osservano diffusamente al lato O dove possono essere presenti massi arginali

e puntualmente in altre zone presumibilmente legati a depositi aerati. Tali valori si riscontrano fin verso i 3 ÷ 4 m di profondità (cfr. allegato 2).

Nell'allegato 2, in cui si riportano le sezioni sul piano XY a intervalli di profondità di 1 m, nella zona delle fondazioni delle pile i valori risultano generalmente inferiori a 200 Ω m, più bassi nella pila n. 2 che evidenzia valori inferiori a 100 Ω m fino alla massima profondità indagata. Non si osservano zone similari tra i valori di resistività al di sotto delle due pile.

A partire dai 4 m circa le resistività si attestano su valori generalmente inferiori a 300 Ω m, risultando minori di 100 Ω m nella maggior parte dell'area indagata.

<u>Tomografia T2-3D</u>: si posiziona con morfologia a C attorno alla spalla n.1 del ponte (cfr. Figura 1 e allegati 3 e 4). L'estensione è stata di 48m x 23m con 72 elettrodi a distanza interelettrodica di 2 m parallelamente all'alveo e di 1 m perpendicolarmente ad esso con 6388 misure effettuate e la massima profondità indagata è di circa 8 m rispetto alla quota di 182.5 m (quota minima del piano campagna in corrispondenza dell'alveo). L'allegato 3 mostra le risultanze dell'analisi a partire dal piano di campagna. Le resistività sono suddivise in intervalli che evidenziano che la maggior parte di esse nella zona esaminata sono comprese tra la 20 Ω m e 750 Ω m. Valori superiori si osservano puntualmente nell'area di indagata dove possono essere presenti massi arginali e depositi aerati. Tali valori si riscontrano fin verso i 2 ÷ 3 m di profondità (cfr. allegato 4). Un'anomalia di alta resistività in una zona ristretta si riscontra in direzione SE-NO a partire dai 3 m di profondità con approfondimento verso NO.

Nell'allegato 4, in cui si riportano le sezioni sul piano XY a intervalli di profondità di 1 m, nella zona delle fondazioni della spalla i valori risultano generalmente compresi tra 50 Ω m a 750 Ω m, per poi calare all'aumentare della profondità verso i valori inferiori citati alla massima profondità indagata. Non si osservano zone omogeneee di resistività al di sotto della spalla.

I valori di resistività ottenuti risultano mediamente più elevati rispetto a quelli della tomografia T1-3D.

2b. HVSR

La misura HVSR si basa sulle rilevazioni del campo di vibrazioni ambientali indicato generalmente come "rumore", generato da varie sorgenti naturali o artificiali (onde del mare, perturbazioni meteorologiche, microsismi, traffico veicolare, etc.). Il metodo proposto da Nakamura nel 1989 presuppone la registrazione delle tre componenti ortogonali del moto tramite una terna di geofoni collegati ad un sismografo e la costruzione di una curva rappresentativa dei rapporti spettrali tra la media delle componenti orizzontali e la componente verticale (H/V). Questo rapporto permette di valutare la presenza di fenomeni di risonanza del terreno di fondazione in condizioni sismiche e fornisce un'indicazione di massima dell'entità del contrasto di impedenza presente in profondità.

Le sette misure HVSR, effettuate con il sismografo PASI GEA24 a 24 bit e il geofono triassiale calibrato Geospace Technologies GS-ONE LF3C, hanno avuto una durata variabile tra 20 minuti e 30 minuti e sono state processate con il software WinMASW della Eliosoft. Una è stata realizzata presso il ponte sul T. Leale, le altre 6 presso il ponte dell'Armistizio sul T. Arzino. Il posizionamento di ognuna è osservabile nella figura 3.

Figura 3 - Posizionamento delle indagini geofisiche di sismica passiva HVSR. Ponte sul T. Leale (a sinistra), ponte dell'Armistizio sul T. Arzino (a destra).

<u>HVSR1</u>: negli allegati 5 e 8 si osserva l'elaborazione della misura e si nota il picco di frequenza fondamentale a 0.85Hz circa con rapporto H/V di circa 2.9. Il segnale risulta direttivo e la persistenza è rispettata, mentre non sono rispettati il minimo di 5 criteri su 6 previsti dal progetto SESAME. Il risultato è stato ritenuto significativo e il risultato dell'elaborazione è stato accettato e il picco è stato usato per la modellazione congiunta con la MASW1.

Sulla curva HVSR è inoltre presente un ulteriore picco a 2.28 Hz circa con rapporto H/V di circa 3.7. Il segnale non risulta direttivo e la persistenza è rispettata. Sono rispettati inoltre il minimo di 5 criteri su 6 previsti dal progetto SESAME. Il risultato è stato ritenuto significativo e accettato per la modellazione congiunta con la MASW1.

<u>HVSR1bis</u>: negli allegati 6 e 9 si osserva l'elaborazione della misura e si nota il picco di frequenza fondamentale a 9.35 Hz circa con rapporto H/V di circa 5.9. Il segnale non risulta direttivo e la persistenza è rispettata. Non sono rispettati il minimo di 5 criteri su 6 previsti dal progetto SESAME. Il risultato è stato ritenuto significativo e accettato per la modellazione congiunta con la MASW2.

<u>HVSR2</u>: nell'allegato 10 si osserva l'elaborazione della misura e si nota il picco di frequenza fondamentale a 13.1 Hz con rapporto H/V di circa 2.5. Il segnale non risulta direttivo e la persistenza è rispettata, mentre non sono rispettati il minimo di 5 criteri su 6 previsti dal progetto SESAME.

Sulla curva HVSR sono inoltre presenti delle ondulazioni prossime al rapporto H/V pari a 2, due delle quali (a 1.5 Hz e a 2.2 Hz circa) a carattere di disturbo antropico la terza a circa 4 Hz senza le caratteristiche di un picco chiaro.

<u>HVSR3</u>: nell'allegato 11 si osserva l'elaborazione della misura e si nota il picco di frequenza fondamentale a 9.85 Hz con rapporto H/V di circa 2.8. Il segnale risulta direttivo e la persistenza è rispettata, mentre non sono rispettati il minimo di 5 criteri su 6 previsti dal progetto SESAME.

Sulla curva HVSR sono inoltre presenti delle ondulazioni a carattere di disturbo antropico.

<u>HVSR4</u>: nell'allegato 12 si osserva l'elaborazione della misura e si nota il picco di frequenza fondamentale a 9.57 Hz con rapporto H/V di circa 4.2. Il segnale non risulta direttivo e la persistenza è rispettata, e non sono rispettati il minimo di 5 criteri su 6 previsti dal progetto SESAME.

Sulla curva HVSR sono inoltre presenti delle ondulazioni prossime al rapporto H/V pari a 2, due delle quali (a 1.5 Hz e a 3.5 Hz circa) a carattere di disturbo antropico.

<u>HVSR5</u>: nell'allegato 13 si osserva l'elaborazione della misura e si nota il picco di frequenza fondamentale a 11.75 Hz con rapporto H/V di circa 3.3. Il segnale risulta direttivo e la persistenza è rispettata, e sono rispettati il minimo di 5 criteri su 6 previsti dal progetto SESAME.

Sulla curva HVSR sono inoltre presenti delle ondulazioni a carattere di disturbo antropico, in particolare a 3.5 Hz e 9 Hz.

<u>HVSR6</u>: negli allegati 7 e 14 si osserva l'elaborazione della misura ed in essa non si nota un picco di frequenza significativo ma solo delle ondulazioni in particolare a 5.5 Hz e 18 Hz circa, entrambe con rapporto H/V inferiore a 2. Il segnale risulta direttivo e non sono rispettati il minimo di 5 criteri su 6 previsti dal progetto SESAME. Il risultato dell'elaborazione è stato utilizzato per la modellazione congiunta con la MASW3. Sulla curva HVSR sono inoltre presenti delle ondulazioni a carattere di disturbo antropico, in particolare a 1.5 Hz e 30 Hz.

2c. MASW

II D.M. 17/01/2018 "Norme Tecniche per le Costruzioni" ha disposto la classificazione dei terreni sede di fondazione di opere strutturali per definire l'azione sismica cui esse saranno sottoposte al momento del verificarsi del fenomeno tellurico. La classificazione semplificata suddivide i suoli in varie categorie basandosi sulla velocità equivalente di propagazione delle onde di taglio V_s fino alla profondità del substrato sismico, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da V_s non inferiore a 800 m/s, al di sotto del piano di posa della struttura secondo la seguente formula:

$$V_{S,eq} = \frac{H}{\frac{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

Per depositi con profondità H del substrato sismico superiore a 30 m, la velocità equivalente delle onde di taglio $V_{s,eq}$ è definita dal parametro $V_{s,30}$, ottenuto ponendo H=30 m nella precedente espressione e considerando le proprietà degli strati di terreno fino a tale profondità.

Negli allegati 5, 6 e 7 si possono osservare i sismogrammi delle MASW realizzate, generati dalla registrazione di 12 canali per le onde di Rayleigh e di Love, le curve di dispersione ottenute e il modello V_s/profondità corrispondente. L'acquisizione è avvenuta mediante il sismografo PASI GEA24 a 24 bit, con geofoni orizzontali a 4,5 Hz, in assetto trasversale e radiale, spaziati di 4 m e offset di 10 m per la MASW1, offset di 6 m e spaziatura di 4 m per la MASW2, e spaziatura intergeofonica di 3 m e 7 m di offset per la MASW3. Come sorgente sismica è stata utilizzata una massa battente. Il processing dei dati acquisiti è stato eseguito con il software WinMASW della Eliosoft. Negli allegati si possono inoltre osservare la corografia di posizionamento e le fotografie di attestazione dell'esecuzione delle indagini.

<u>MASW1</u>: l'interpretazione congiunta tra la MASW1 e l'HVSR1 (cfr. Allegato 5) ha permesso di ottenere il profilo di velocità richiesto dalla normativa vigente per la zona del ponte sul T. Leale. La tabella 1 riporta le profondità, gli spessori e le velocità Vs delle onde di taglio per la ricostruzione a 12 sismostrati rilevata dal modello individuato.

Strato	Profondità (m)	Spessore h (m)	Velocità Vs (m/s)
1	0.1	0.1	100
2	0.6	0.5	130
3	1.6	1.0	170
4	4	2.4	200
5	5.5	1.5	140
6	6.8	1.3	200
7	8	1.2	140
8	16.8	8.8	210
9	22.3	5.5	290
10	80.3	58.0	610
11	250.3	170.0	820
12	1	1	1750

Tabella 1 – Valori di velocità V_s per la sismostratigrafia della MASW1 a 12 strati.

<u>MASW2</u>: l'interpretazione congiunta tra la MASW2 e l'HVSR1bis (cfr. Allegato 6) ha permesso di ottenere il profilo di velocità di normativa per la zona della spalla in sinistra idrografica del ponte dell'Armistizio. La tabella 2 riporta le profondità, gli spessori e le velocità Vs delle onde di taglio per la ricostruzione a 10 sismostrati rilevata dal modello individuato.

Strato	Profondità (m)	Spessore h (m)	Velocità Vs (m/s)
1	0.5	0.5	80
2	1.7	1.2	150
3	3.6	1.9	230
4	5.1	1.5	290
5	6.1	1.0	350
6	7.6	1.5	480
7	9.1	1.5	400
8	10.1	1.0	760
9	80.1	70.0	985
10	1	1	1400

Tabella 2 – Valori di velocità V_s per la sismostratigrafia della MASW2 a 10 strati.

<u>MASW3</u>: l'interpretazione congiunta tra la MASW3 e l'HVSR6 (cfr. Allegato 7) ha permesso di ottenere il profilo di velocità di normativa per la zona della spalla posta in destra idrografica del ponte dell'Armistizio.

La tabella 3 riporta le profondità, gli spessori e le velocità Vs delle onde di taglio per la ricostruzione a 10 sismostrati rilevata dal modello individuato.

Strato	Profondità (m)	Spessore h (m)	Velocità Vs (m/s)
1	0.2	0.2	141
2	0.6	0.4	207
3	1.9	1.3	233
4	2.8	0.9	295
5	5.0	2.2	360
6	8.7	3.7	400
7	15.2	6.5	345
8	70.2	55.0	710
9	180.2	110.0	965
10	1	1	1200

Tabella 3 – Valori di velocità Vs per la sismostratigrafia della MASW3 a 10 strati.

Sulla base del profilo di velocità individuato sarà possibile determinare i parametri dell'azione sismica rigorosa o semplificata una volta note le profondità di imposta delle fondazioni.

Allegato 1	Progetto: Intervento PNRR03_EDRUD - Segr Committente: Ente di Decentramento di Udine	alazione: 5340
Acquisizione: Dipolo - Dipolo	Località: Trasaghis (UD), ponte sul T. Leale	
Linea N°: T1-3D	Data: 14 febbraio 2024	
Intervallo stazioni: 2 m	Area di indagine: 48 m x 24 m	N° di elettrodi: 72

Sezione tomografica piano XY a quota 178 m sovrapposta alle pile n.1 e n.2

Intervalli di resistività piani XY a varie quote e impronta delle pile

Quota 182.5 m (piano campagna)

Quota 181.5 m

 \leftarrow

Quota 180.5 m

Quota 179.5 m

Quota 178.5 m

Quota 177.5 m

Quota 176.5 m

Quota 175.5 m

Allegato 2 Progetto: Intervento PNRR03_EDRUD - Segnalazione: 5340 Acquisizione: Dipolo - Dipolo Committente: Ente di Decentramento di Udine Acquisizione: Dipolo - Dipolo Località: Trasaghis (UD), ponte sul T. Leale Linea N°: T1-3D Data: 14 febbraio 2024		
Acquisizione: Dipolo - DipoloLocalità: Trasaghis (UD), ponte sul T. LealeLinea N°: T1-3DData: 14 febbraio 2024	Allegato 2	Progetto: Intervento PNRR03_EDRUD - Segnalazione: 5340 Committente: Ente di Decentramento di Udine
Linea N°: T1-3D Data: 14 febbraio 2024		
	Acquisizione: Dipolo - Dipolo	Località: Trasaghis (UD), ponte sul T. Leale

	750. 563. 376. 189. 2.00			750. 563. 376. 189. 2.00
Allega	ato 3 Progetto: Committe	Intervento PNRR03_EDRUD - S ente: Ente di Decentramento di U	Segnalazione: 5340 dine	
Acquisizione: Dipolo -	Dipolo Località:	Trasaghis (UD), ponte sul T. Lea	le	
Linea N°: T2-3D	Data: 14	febbraio 2024		
		1 40 00	Nº di alattradi, 72	

Sezione tomografica piano XY a quota 178 m sovrapposta alla spalla n.1 <u>Spalla 1</u> Intervalli di resistività piani XY a varie quote e impronta della spalla $\overleftarrow{\mathcal{Z}}$ Quota 181.5 m Quota 182.5 m (piano campagna) 750 563. 376. 189. 2.00 Quota 180.5 m Quota 179.5 m 750. 563. 376. 189. 2.00 Quota 178.5 m Quota 177.5 m 750 563. 376. 189. 2.00

Quota 176.5 m

Quota 175.5 m

		376. 189. 2.00	
	Allegato 4	Progetto: Intervento PNRR03_EDRUD - Committente: Ente di Decentramento di	- Segnalazione: 5340 Udine
	Acquisizione: Dipolo - Dipolo	Località: Trasaghis (UD), ponte sul T. Lo	eale
	Linea N°: T2-3D	Data: 14 febbraio 2024	

Geofoni: 4,5 Hz

Allegato 7 MASW3 e HVSR6 Progetto: Intervento PNRR03_EDRUD - Segnalazione: 5340 Committente: Ente di Decentramento di Udine Località: Forgaria nel Friuli (UD), ponte dell'Armistizio Data: 5 marzo 2024

Geofoni: 4,5 Hz

ALLEGATO 8 HVSR1 Horizontal-to-Vertical Spectral Ratio from passive seismics

Date: 6 2 2024 Time: 16 09

Dataset: 2024-02-06_16-09_HVSR1.seg2

Original record length (min): 30.0 Sampling frequency (Hz): 64 Window length (sec): 60 Length of analysed temporal sequence (min): 14.8 Tapering (%): 5 Smoothing: 15 %

In the following the results considering the data in the 0.5-1.5Hz frequency range Class Peak frequency (Hz): 0.9 (\pm 0.2) Peak HVSR value: 2.9 (\pm 0.5)

#1. [f0 > 10/Lw]: 0.852 > 0.16667 (OK)
#2. [nc > 200]: 1380 > 200 (OK)
#3. [f0>0.5Hz; sigmaA(f) < 2 for 0.5f0 < f < 2f0] (OK)

#1. [exists f- in the range [f0/4, f0] | AH/V(f-) < A0/2]: yes, at frequency 0.2Hz (OK)

- #2. [exists f+ in the range [f0, 4f0] | AH/V(f+) < A0/2]: (NO)
- #3. [A0 > 2]: 2.9 > 2 (OK)

#4. [fpeak[Ah/v(f) \pm sigmaA(f)] = f0 \pm 5%]: (NO)

- #5. [sigmaf < epsilon(f0)]: 0.232 > 0.128 (NO)
- #6. [sigmaA(f0) < theta(f0)]: 0.552 < 2 (OK)

20	¹⁹ Limo sabbioso argilloso grigio c	¹⁸ Limo sabbioso grigio.	Sabbia fina limosa grigia. ₩		¹⁵ Limo argilloso sabbioso grigio.	⊶ Ghiaia poligenica da fina a gros: nocciola.	¹² Limo sabbioso argilloso grigio.	Ghiaia poligenica medio-fina arr	Limo argilloso debolmente sabb	 Ghiaia poligenica da fina a gros: nocciola. 	⁷ Limo argilloso grigio.	Limo sabbioso da nocciola a gri	⁵ Ghiaia poligenica da fina a gros: Ilmosa nocciola con ciottoli fino :	Limo sabbioso ghiaioso nocciola	ω - -	1 Ghiaia poligenica medio-fina arr	Terreno vegetale: ilmo sabbioso	DESCRIZIC	Dam 0.00 Am 20.00	RESPONSABILE _ dott. geol. De	COORDINATE: Nord	COMMITTENTE EUR CANTIERE S.R.41		MENAI DINIA
	on livelli centimetrici di torba.					sa arrotondata limoso sabbiosa		otondata limoso sabbiosa nocciola.	ioso grigio.	sa arrotondata limoso sabbiosa		gio.	sa arrotondata sabbiosa debolmente a 8 cm.	<u>a</u>		otondata con sabbia limosa nocciola.) marrone.	DNE STRATIGRAFICA	Profondità Finale m 30.00	Giusto A. OPERATORE sig. Jugov	. DATA INIZIO Est .	FORGARIA" - PONTE TOF		SCHEDA DI S
20.00		18.50	17.00	15.80	15.00		13.00	11.20	9.70	8.80	7.10	6 <u>.</u> 60	6.00	3.60	2.90	2.30	0.20	ROFONDITA' da p.c.		ac Z	ţ	RREN-		ŐN
	>_ >_ >_ ₅ > ₅ > ₅ > ₅ _ > ₅ > ₅ ₅ > ₅ > ₅			\$ \$ \$ \$ \$ \$ \$ \$ \$			253115311531 25115511551155115 2531155115511551 2531155115511551 251155115511551	Sachara and a strain and a strain a str	<mark>67</mark> 51155115 86115511551 87551155115 86115511551		>_ >_ >_ >_ >_					ັດອີດຊີຣັດອີດຊີຣັດອີດ ວຣີຣ໌ຈັດອີດຣ໌ຣ໌ຈັດອີດ ເດືອດຊີຣັດອີດຊີຣັດອີດ ວຣີຣ໌ຈັດອີດຣ໌ຣ໌ດີອີດຣ໌ຣ໌	SIN ST	MBOLOGIA RATIGRAFIC	CA		 Q			DAG
																	TIF NU	PO JMERO	CAMP	REZZAT	OTA P.C.			OIU
																	PR m d	ROFONDITA' da p.c.	N	URA .	יי ה ייי ל	aSAC		
1.50				1.00	2 1 50		122022 1225 1250 1255 1255 1255 1255 125	ч Эл	1.00		1.25	2					PC PE Kg	DCKET ENETROMET //cm ²	ĒR	Puntel F	01061605	SHIS	PAG_1	DOC. 1
0.34	0.36 0.28 0.24))		0 <u>.</u> 52	0.486		0000000 0043 8448 8448		0.32 0.44		0.72						ТС Кд	DRVANE //cm ²		'X 1000	Ļ	(UD)		
	7	10 10 10 10 10 10	2138	4	≻໑∞ '''''	100 1111	ω α 4 *	⁻¹ 35 ⁻⁴	ω N N	ഗഗഗ * பப	¢	ມດດ ເມເມ	4ωτυ o **	040 1111	ىر *	∞√5 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		z	s.				DI 2	
	18 <u>4</u> 5		16.80	15.45	15 00	13.50 13.95	12.00 12.15 12.45 12.45	10.50 10.65 10.95	9.30 9.45	7.50 7.95 9.00	0.45		4.50 4.95 6.00	3 3 1 3 45	3.00	++++ 1.50 1.95		т	P.T.	·				

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1							
			j 🗖		/		
	MANOVRA DI CAROTAGGIC			CA	CA	SP	
			≦ P	MP	ΔP	EZZ	MPI
		7.C	ONE ONE	ONE	ONE	:ONE	
		<u>~</u>	Ī	Z	Z		고 고 고
		S.C		DIS	DIS	CAF	MAN
		<u>7</u>		FUR	FUR	QT	LE Q
		RO	BAT	BAT	BAT	Þ	GIA- GIA-
		~ <u>0</u>		ОA	0 P.		
	< 5 cm			PIS	ARE		A A
			NT.	TON	SE		ANE
	5-10 cm			Π	Ē		H.
	> 10 cm	=			Ē		ST
	TIPO						
	NUMERO	밁					
	PROFONDITAL	Ĩ					
	m da p.c.						
		+					
		ν.				<u>_</u>	5 R
						8	^콩 위 골
		MEN.					
		FAZIO					
		141	1			- 13	シカートニ

			I A	50	EST	
20.00	CAROTAGGIO CONTINUO A SECCO	METODO DI PERFORAZION	1E		GG	ANTE LA
20.00	CAROTIERE SEMPLICE Ø 101 MM	ATTREZZO DI PERFORAZION	١E		Ŧ	
20.00	ø 127 MM	RIVESTIMENT	0	28	GG	RAZIONE
20.00	28/02/2024	DATA		2.90	Ŧ	
	N° 6 Normation 1 N° 6 N°	ស .*			PAG.	DOC.
	casse	oT ese			-	
	te cate	eguito a		NOTE		-
	alogatr alogatr	<u>u</u>			2	

 6	e N	N N	N N		Ņ	N	N N	- 1		- 1				1	
Fine sonda	Sabbia medio-fina debolmemte li	7 Ghiaia poligenica medio-fina arro	s Elimo argilloso debolmente sabbio	Torba.	₄ Sabbia fina limosa grigia.	Limo sabbioso grigio.	² Ghiaia poligenica medio-fina arro	Limo sabbioso argilloso grigio co	DESCRIZION	Dam 20.00 Am 30.00	RESPONSABILE dott. geol. De	COORDINATE Nord	COMMITTENTE EDH CANTIERE S.R.41	GEUNLPINA	
ggio a 30.00 m.	mosa grigia.	stondata limoso sabbiosa grigia.	oso grigio.				otondata limoso sabbiosa grigia.	on livelli centimetrici di torba.	NE STRATIGRAFICA	Profondità Finale m 30.00	Giusto A. OPERATORE sig. Jugov	. DATA INIZIO . 28/02/202 Est	r ud Forgaria" - Ponte Tof		
	30.00	28.60	26.10	24.40 24.80		22.90		20.30	PROFONDITA' m da p.c.		ac Z.	24	RREN		Š
	\$ \$	ູ່ໃດຊູ້ເວັງດີດູ້ເວັງດີດູ້ເວັງ ໄຮ່ຈຳວິເຮັ່ງດີເຮັງດີ ໃດຊູ້ເວັງດີດູ້ເວັດຊູ້ ໄດ້ຊູ້ເວັດຈຳດີດູ້ເວັດຊູ້	\$_ \$_ \$_ \$ _\$ _\$ _\$ \$_ \$_ \$_	A A A A A A A A A A A A A A A A A A A			ັ້ຽກີອັດີເວັກີອັດີເວັກີ ອຣ໌ລັງດີອີດີເວັກີອີດີເວັກີ ເກືອີດີເວັກີອີດີເວັກີ ອຣ໌ລັງດີອີດີເວັກີອີດີເວັກີອີດີເວັກີອີດີເວັກີອີດີເວັກີອີດີເວັກີອີດີເວັກີອີດີເວັກີອີດີເວັກີອີດີເວັກີອີດີເວັກີອີດີ	2 S 2 S 2 S 2 S 2 S	SIMBOLOGIA STRATIGRAFIC	A	. ATT		NTE LEALE		טעעע
										CAM	REZZA	IMAZIO DTA P r	Ц Ц		ה
								1	PROFONDITA' m da p.c.	PIONI	TURA .	Ϊ Π Ν	RASA		
			1 3 2 00 1 50 50	1.50				1.25	POCKET PENETROMETI Kg/cm ²	ER	Puntel	29/02/20	GHIS	PAG.	DOC.
			1 02 0 44	0.94				0.42	TORVANE Kg/cm ²		PX 1000	24	(UD)		
		25 [*] 34		31	19		26 33		z	s	C			<u>D</u>	
		27.00 1127.30 27.45 27.45		24.30	24.00		21.00 21.45 21.45		т	P.T.					

MANOVRA DI CAROTAGGIO	FORO	CAM	CAM	CAM	CAMI	CAM
%	TCR	PIONE IN	PIONE IN	PIONE IN	PIONE RI	PIONE RI
%	S.C.R.	DISTUR	DISTUR	IDISTURI	IMANEGO	IMANEGO
%	R.Q.D.	BATO RO	ΒΑΤΟ Α Ι	ΒΑΤΟ ΡΑ	SIATO D, A	SIATO SIATO D,
< 5 cm		DTAT	PISTO	RETI	A VAI	A S.P
5-10 cm	AFSIO	δ	ONE	SOT	VE TE	Η
> 10 cm ≧	π			Ē	ST	
TIPO NUMERO	PRO					
PROFONDITA' m da p.c.	OVE					
	STRI				PROF FORC	,
	JMENT					
	'AZION				RIVE	<u>у</u> н о,

		Ż		ROF.	
CAROTAGGIO CONTINUO A SECCO	METODO DI PERFORAZION	E		GG	RANTE LA
CAROTIERE SEMPLICE Ø 101 MM	ATTREZZO DI PERFORAZION	E		HRA	PERFO
27. ø 127 MM	RIVESTIMENTO			GG	RAZIONE
8 29/02/2024	28/ 1.02/ 02/ 024			ПNA	
N° 6 cassette catalogatrici	- * SPT eseguito a punta chiusa - materiale roccolto in		NOTE -	PAG. 1 DI 1	DOC. 1

20	19	17		15	14 14	13	1	9 10		7	。 	4 0		» N	<u>_</u>							
	Limo sabbioso argilloso grigio co	Sabbia medio-fina debolmente li ghiaiosi.	Limo argilloso debolmente sabbio	Ghiaia poligenica da fina a gross: nocciola.	Sabbia fina limosa grigia.	Limo sabbioso argilloso grigio.	Ghiala poligenica medio-fina arro a nocciola.	Limo sabbioso argilioso grigio.	Ghiaia poligenica medio-fina arro	Limo sabbioso argilloso grigio.	Ghiaia poligenica medio-fina arro	Ghiaia poligenica medio-fina arro	Limo sabbioso nocciola.	Ghiaia poligenica da fina a gross:	Riporto: ghiaia poligenica da fina nocciola con pezzi di cls.	DESCRIZION	Dam 0.00 Am 20.00	RESPONSABILE dott. geol. De	COORDINATE: Nord	COMMITTENTE EDF	GEOALPINA	~~~ _ ~~~ \
	n livelli centimetrici di torba.	mosa grigia con livelli centimetrici	oso grigio con resti lignei.	a arrotondata limoso sabbiosa			tondata limoso sabbiosa da grigio		tondata limoso sabbiosa nocciola.		tondata limoso sabbiosa nocciola.	tondata limoso sabbiosa nocciola.		a arrotondata limoso sabbiosa nocciola.	a grossa arrotondata sabbiosa	4E STRATIGRAFICA	Profondità Finale m 30.00	Giusto A. OPERATORE sig. Jugov	. DATA INIZIO . 29/02/202 Est	? UD FORGARIA" - PONTE TOF		
20.00		18 <u>.</u> 10	16.70	15 <u>.</u> 30	13.50 13.90		11.20	10.00	8.80	7.50	0.00		3.20	2.90	1.30	PROFONDITA' m da p.c.		ac Z.	4	REI		Ž
	\$_ \$_ \$_ \$ _\$ _\$ _\$ \$_ \$_	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			<mark>\$}}</mark> \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	115 (115 (115 (115 (115 (115 (115 (115				2015 5 5 5 5 5 5 5 5 2 5 5 5 5 5 2 5 5 5 5 5 5 5 5 5						SIMBOLOGIA STRATIGRAFI	СА	ATT		NTE LEALE	NDAG	シック
-																TIPO NUMERO PROFONDITA' m da p.c.	CAMPIONI	REZZATURA	IMAZIONE	E - TRASA	GIC	20
	2 1 1 1 1 1		1111 250 50			1.50		-1-1-1- 50000			1 00					POCKET PENETROMET Kg/cm ²	ER	Puntel	01/03/20	GHIS	PAG.	DOC.
	0.000 0.200 32800		0 38 0 44 0 42			0.28		0.48 0.37 0.34	,	0.28 0.28 28 28	0 14					TORVANE Kg/cm ²		PX 1000)24	(UD)		
	<u>ن</u> ە ت	4 <u>1</u> 0	o 4 ۵	∼ <u>1</u> 1 *	407	а 4 4 *	ထပာယ · · · · *	ωω4	4 rð	το 4 4 • · · · · ·	- 7 *	440	σω.	، ۲۵۱ ×	*	z	6	0			DI 2	
	18.30 18.45	16 80 18 00 18 00	16.50 16.50	15.00 15.00	13 80 13 95	12.00 12.15 12.45	10.50	9.30 9.45	9 7 7 80 7 95 00	- 6 30 7 50 50	6.00 6.15	4.95 4.95	<u> </u>	3.00 1.80	1.50	т	PT					

· · · · · · · · · · · · · · · · · · ·		= D				
	MANOVRA DI CAROTAGGIO	V FORO	CAM		SPE	
	T.C.R.			PIONE II	ZONE E	PIONE F
	С. Л.			VDISTUF	DI CARO	RIMANEG
	R.Q. 2.0 ס.		RBATO R	RBATO P	ΓA	GIATO
	< 5 cm ග 🖵		OTAT	ARET		DA S.F
	5-10 cm		NO F	TOSIT		
	> 10 cm ≧ 🛱					TST
	PROFONDITA'					
	STR				6 <u>.</u> 0	PRO
	ÜMEN					
	TAZIO				4	

			i	Z TI	50	EST ST	
20.00	CAROTAGGIO CONTINUO A SECCO		METODO DI PERFORAZIONE			GG SE	
20.00	CAROTIERE SEMPLICE Ø 101 MM		ATTREZZO DI PERFORAZIONE			н	, PERFOI
20.00	ø 127 MM		RIVESTIMENTO		29	GG MA I	RAZIONE
20.00	29/02/2024		DATA		3 <u>.</u> 20	H	
		- * SI - mat N° 6				PAG.	DOC.
		oT ese a chius teriale casse				→	→
		aguito ; sa tte cat			NOTE	▣	-
		a alogatr				N	
		rici					

	20 29 27	26	25 24 23	22	21	4						
Fine sond	Ghiaia poligenica da fina a gross	Limo argilloso debolmente sabb. torba.	Sabbia medio-fina debolmente li ghiaiosi.	a grigia. Sabbia fina limosa grigia. Limo argilloso da grigio scuro a ç	Limo sabbioso argilloso grigio co	DESCRIZIO	Dam 20.00 Am 30.00	COORDINATE: Nord . RESPONSABILE _ dott. geol. De	PERFORAZIONE N. S2	COMMITTENTE EDF	GEOALPINA	~~~ \
iggio a 30.00 m.	a arrotondata limoso sabbiosa nocciola.	ioso grigio con livelli centimetrici di	imosa grigia con livelli centimetrici	priglo.	on livelli centimetrici di torba.	NE STRATIGRAFICA	Profondità Finale m 30.00	Giusto A. OPERATORE sig. Jugov	. DATA INIZIO . 29/02/202	R UD FORGARIA" - PONTE TOF		
	30.00	25 30 26 70		22.00 22.50 22.80	21.10	PROFONDITA' m da p.c.		ac Z	4	REI		2
					<mark>ð</mark> ens ins ins Sesnissins Sens ins ins Sens ins ins Sesnissins s	SIMBOLOGIA STRATIGRAFIC	4			NTE LEALE	NDAG	シック
							CAN	DTA P.O	IMAZIC	- - -		ז
						PROFONDITA' m da p.c.	IPIONI	TURA	ŇE (RASA)
		2.25 2.75 4.00		2.00	11200 1500	POCKET PENETROMETE Kg/cm ²	R	Puntel F	01/03/202	GHIS	PAG.	DOC.
		1 16 0 20 0 38		0.84	0064 056	TORVANE Kg/cm ²		•X 1000	24	(UD)		
	29 37		35 ×	26	15 _*	z	s					
	27.00 <u>++2</u> 7.15 27.45		24.00 <u>112</u> 24.15 24.45	21.45	1121 00 21 00	т	PT.					

N (3)	70 70 70	10 10	70 70	() (6.2 8.2	b 3	A.3	A) A)	N3 N3			1							
	8 97 6 6	× 2	8 8	<u>ä</u>	8 8		27	8 6	¥ 8	22	2			ΞŖ					
												MANOVRA CAROTAGO	di Gio	OVE FORO	CAMF	CAMF	CAM	CAM	CAM
													T.C.R.		PIONE IN				
													S.C.R		NDISTUR	UDISTUR	UDISTUR	IMANEG	
													R <u>Q</u> D		BATO R	BATO A	A BATO P	GIATO E	GIATO
												< 5 cm	s DI		ΟΤΑΤ	PIST	ARET	DA VA	0
												5-10 cm	PEZZO		VO		TOS	NE TE	-
												> 10 cm	Ξm			i		EST	
												NUMERO							
												PROFONDI m da p.c.							
													STR					PROF FOR	
												-	UMEN					0."	RILIE
													TAZIO					₽₽	ЮΗ

						ЮF EST	
30.00 C/	AROTAGGIO CONTIN	METOL PERFC	O DI RAZIONE		GG	ANTE LA	
30.00	CAROTIERE SEMPLI	ATTRE PERFC	ZZO DI RAZIONE		н	PERFOR	
	27.00	ø 127 MM	RIVES	IMENTO		GG	RAZIONE
8 01/03/2024	25.50	29/02/2024	DATA			H	
			- * SPT eseguito a punta chiusa - materiale roccolto in N° 6 cassette catalogatrici		NOTE	PAG. 1 DI 1	DOC. 1